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Abstract For the commercial production of CoQ10,

batch-type fermentations were attempted in a 150-l fer-

menter using a mutant strain of R. sphaeroides. Optimum

temperature and initial aeration rate were found to be 30�C

and 2 vvm, respectively. Under optimum fermentation

conditions, the maximum value of specific CoQ10 content

was achieved reproducibly as 6.34 mg/g DCW after 24 h,

with 3.02 g/l of DCW. During the fermentation, aeration

shift (from the adequate aeration at the early growth phase

to the limited aeration in active cellular metabolism) was a

key factor in CoQ10 production for scale-up. A higher

value of the specific CoQ10 content (8.12 mg/g DCW) was

achieved in fed-batch fermentation and comparable to

those produced by the pilot-scale fed-batch fermentations

of A. tumefaciens, which indicated that the mutant strain of

R. sphaeroides used in this study was a potential high

CoQ10 producer. This is the first detailed study to dem-

onstrate a pilot-scale production of CoQ10 using a mutant

strain of R. sphaeroides.
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Introduction

Ubiquinones, which are also referred to as coenzyme Q, are

membrane-bound lipid components. They are naturally

occurring oil-soluble materials found abundantly in ani-

mals, plants, and microorganisms as a coenzyme involved

in biological reactions. They play an important role not

only as an electron carrier in the respiratory chain, but also

as an antioxidant and prooxidant [1–4]. The number of

isoprene units in the prenyl side chain of ubiquinones

varies depending on the living organism. Coenzyme Q10

(CoQ10), 2,3-dimethoxy-5-methyl-benzoquinone with a

side chain of ten monosaturated isoprenoid units, is the

only ubiquinone homolog found in human organs [5].

In human beings, CoQ10 boosts energy, enhances the

immune system, and acts as an antioxidant [1]. Recently,

CoQ10 has been widely used for pharmaceuticals, cos-

metics, food supplements, etc., because of its various

physiological activities [6–8].

CoQ10 is able to be produced by chemical [9], semi-

chemical [10], or biological synthetic methods. The

biological synthesis of CoQ10 is more diversely used

than the chemical and semi-chemical syntheses. This is

because the starting materials used during chemical

synthesis of CoQ10 are different from those used in

microorganisms and human beings [11]. Therefore, the

commercial production of CoQ10 biologically synthesized

from microorganisms has attracted increasing attention

[12], and construction of genetically engineered micro-

organism and metabolic modification have been attemp-

ted to improve yields of CoQ10 [6, 13–16]. Despite the

recent accomplishments in metabolic engineering of

Escherichia coli for CoQ10 production, production levels

are not yet competitive with the levels produced by

isolation or fermentation [14], illustrating the need for a
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careful assessment of the physiological and metabolic

bottlenecks limiting CoQ10 biosynthesis [17]. In addition,

low yields from microbiological production of CoQ10 on

an industrial scale have resulted in a high cost for

CoQ10 [11]. Accordingly, intensified efforts in the

development of bioprocess have been made for the

commercial production of CoQ10 [17], and recently a

coupled fermentation-extraction process has been sug-

gested with enhanced production of CoQ10 by Sphingo-

monas sp. [18].

Up to now, the isolation of natural producers has been

the most successful strategy in the development of

microbial strains for the commercial CoQ10 production

[17], and further improvements in CoQ10 production

were achieved by chemical mutagenesis [19]. Among the

natural producers, Agrobacterium tumefacients and Rho-

dobacter sphaeroides have been identified as good can-

didates for CoQ10 production [11, 12]. In our previous

study [20], R. sphaeroides was found to be able to grow

photosynthetically under strictly anaerobic conditions and

aerobically in either light or dark conditions, which may

lead to make scale-up of the CoQ10 fermentation diffi-

cult. This is because the main bottleneck in scale-up of

phototrophic fermentation has been found to be the low

efficiency of light energy conversion to the desired

product, which is caused by an excessive dissipation of

light energy to heat [21]. Even though photosynthetic

bacteria have been diversely applied [6, 22–24],

especially to the hydrogen production to meet the

increasing demand for energy in recent years [25, 26], a

few of their pilot-scale studies have been reported to

date [27].

Although an interest in CoQ10 has been recently

renewed due to the growing demands of the pharmaceutical

industry [17], a few scale-up studies of the CoQ10 fer-

mentation have been conducted using microorganisms

other than photosynthetic bacteria: optimization of culture

conditions and scale-up to pilot and plant scales using A.

tumefaciens [11] and statistical optimization of culture

conditions and operation parameters in a 150-l fermenter

using Paracoccus denitrificans [28]. As a result, a pilot-

scale fermentation of R. sphaeroides is necessary to verify

its potential for commercial CoQ10 production. Recently,

we identified a high-coenzyme-Q10-producing R. sph-

aeroides mutant of an isolated strain [29] and deposited it

into the Korean Agricultural Culture Collection (KACC) as

R. sphaeroides KACC 91339P. Therefore, in this study, a

scale-up fermentation was attempted from a 1-l fermenter

to a 150-l fermenter, upon which the optimum fermentation

conditions and operation parameters were investigated

for high CoQ10 production using a mutant strain of

R. sphaeroides.

Materials and methods

Microorganism and culture medium

R. sphaeroides KACC 91339P, a mutant strain, was used in

this study, the wild-type cell of which was isolated from

the silt of the Nakdong River (Busan, Korea) by our lab-

oratory [29]. The strain was maintained on a solid agar

plate that contained (per l): 1 g of malic acid, 2 g of

casamino acid, 3 g of yeast extract, 1 ml of vitamin solu-

tion, 1 ml of mineral solution, and 15 g of agar. The vitamin

solution contained (per l): 0.2 g of nicotinic acid, 0.4 g of

thiamine-HCl, 0.2 g of nicotinamide, and 0.008 g of biotin.

The mineral solution contained (per l): 3 g of FeS-

O4 � 7H2O, 0.01 g of H3BO3, 0.01 g of Na2MoO4 � 2H2O,

0.02 g of MnSO4 � H2O, 0.01 g of CuSO4 � 5H2O, 0.01 g

of ZnSO4, and 0.5 g of ethylenediamine tetraacetic acid.

The pH of the culture medium was adjusted to 7.2 before

autoclaving at 121�C for 15 min. The above liquid culture

medium excluding agar was used to cultivate cells for seed

culture and laboratory- and pilot-scale fermentations. The

photosynthetic bacterium was regularly checked under a

microscope to ensure that contamination had not occurred

and was transferred to a fresh agar plate every 2 weeks.

Seed culture and chemical mutation

To prepare pure seed-culture for pilot-scale fermentation,

cells were first transferred to a 10-ml tube after being taken

from the colony using tip, and incubated at 30�C, 180 rpm,

and 50 lux. When cells were grown to the end of the

exponential growth phase, a 5-ml culture broth was then

inoculated into a 250-ml flask containing 60 ml of the fresh

culture medium and incubated under the same culture

conditions. Likewise, 60 ml of the culture broth was finally

transferred to a 1-l reactor (Marubishi, Japan) in a 600-ml

working volume. Cells in the reactor were cultivated at

30�C, 200 rpm, 2 vvm, and 50 lux. ‘Antifoam 204’ (dilu-

ted 10-fold) was occasionally used when severe foaming

occurred. The seed culturing for pilot-scale fermentation

was continued by repeated-batch culture until 90 g of cells

(wet weight) were collected. After each batch culture, the

cell pellet was prepared by centrifuging the culture broth at

6,000 rpm for 10 min and then decanting the supernatant

after two washes with distilled water.

To produce mutant cells from wild-type R. sphaeroides

cells, the following steps were carried out. Ninety grams of

wet cells obtained from the seed culturing were suspended

in a 900-ml 0.5 M Tris-maleate buffer (pH 6.2) containing

30 mg/ml of menadinone, and mixed severely at a room

temperature for 20 min. Then, cells were washed twice

with 0.85% saline. After being centrifuged, the cells were
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resuspended in a 2-l flask containing 1.2-l fresh culture

medium and incubated for 2 h at 30�C, 180 rpm, and

50 lux in order to allow mutant cells to adapt to the culture

medium. The mutant cells prepared in this way were used

as a seed culture for the pilot-scale fermentation. To ensure

the chemical mutation had been properly achieved, the

mutant cells were spread on a bouillon medium containing

0.5% meat extract, 0.5% peptone, 0.5% NaCl and 2% agar

(pH 7.2) [30]. It was confirmed that mutant cells formed

green colonies on the agar plates.

Laboratory-scale fermentation for CoQ10 production

To investigate the effect of temperature on CoQ10 pro-

duction, batch-type fermentations were carried out in a 1-l

reactor at various temperatures (27, 30, 34, 37, and 40�C).

After 60 ml of the seed culture was inoculated into the

reactor filled with 540 ml of the culture medium, the fer-

mentation was started at 200 rpm and 50 lux under each

temperature. Air was initially supplied at 2 vvm until the

DO level dropped to 0.9 mg/l, after which the aeration rate

was controlled by on-off air supply to maintain the DO

level at less than 1.0 mg/l, based on our previous study

[31]. ‘Antifoam 204’ (diluted 10-fold) was occasionally

used when severe foaming occurred. Samples were taken

periodically from the reactor to measure the concentrations

of dry cells and CoQ10. The pH and DO were measured in

real time using Labo Controller (Marubishi, Japan). The

dry-cell weight (DCW) of the bacteria was determined by

weighing the cell pellet after it was dried in an oven at

105�C for 12 h.

Pilot-scale fermentation for CoQ10 production

To scale up the data achieved from the laboratory scale for

the commercial CoQ10 production, pilot-scale fermenta-

tions were carried out in a 150-l conventional continuous-

stirred-tank reactor filled with 90 l of the culture medium.

The floor of the whole working room was thoroughly

cleaned using the detergent Terg-A-Zyme (Alconox, USA).

The reactor was filled with a 3 mg/l chloroform solution

for 1 day for its sterilization. After the chloroform solution

was evacuated, the reactor was filled with hot (higher than

80�C) autoclaved dissolved water (DW) and placed for 7 h

in order to wash the remaining chloroform. When this

procedure for the sterilization of the reactor was com-

pleted, 1.2-l resuspended mutant cells (90 g wet cells) was

inoculated into the reactor containing 90 l of the fresh

culture medium, and fermentation was started at 30�C and

200 rpm. The air from the air compressor (set at 2 kgf/cm2)

was supplied into the reactor initially at various aeration

rates (1, 2, and 3 vvm) to investigate the effect of the initial

aeration rate on CoQ10 production. The air was supplied

into the reactor through the air filter packed with sterile

glass wool, and air bubbles were distributed by three

ceramic disk-typed diffusers (12-cm diameter) installed at

the bottom of the reactor. A sterile air filter was also

installed at the air exit in order to prevent contamination

from the outside. When severe foaming occurred, the DO

level was controlled at less than 1.0 mg/l by on-off air

supply. By the use of two incandescent bulbs (100 W),

50 lux of light was supplied through the two-sided glass

(8 cm 9 35 cm) installed on the body of reactor. Ten-fold

diluted ‘Antifoam 204’ was used when severe foaming

occurred during fermentation. Samples were collected

periodically from the reactor to measure the concentrations

of dry cells and CoQ10.

To obtain more CoQ10 accumulation in the fermenter, a

fed-batch operation was adopted using the four-stage

feeding strategy proposed by Gu et al. [32]. The working

volume in the fed-batch fermentation increased from 50 to

90 l by intermittent feeding of concentrated culture med-

ium. The concentration of each component in the concen-

trated culture medium was decided by considering the

change of working volume, and thus, the initial concen-

tration in every fed-batch operation was the same as that of

culture medium used in batch fermentation. When the DO

level was increased over 1 mg/l without air supply,

the feeding solution of 10 l was added intermittently

four times. Just after new fed-batch operation was started,

pH of the culture medium was adjusted to 7 with sterile 3-

N HCl in order to maintain high cell activity. The other

culture conditions of the fed-batch fermentation were the

same as those of the batch fermentation.

Extraction and measurement of CoQ10

CoQ10 was extracted from the R. sphaeroides mutant strain

and analyzed by the methods of Matsumura et al. [33] and

Takahashi et al. [7] with modifications. Ten grams of cells

(wet weight) was suspended in 70 ml of methanol, and the

slurry was heated at 55�C for 5 min. Chloroform (140 ml)

was added, and the suspension was stirred at 30�C for

20 min and filtered through filter paper (Whatman no. 1).

NaCl solution (0.58%, w/v) was added by one-fifth of the

filtrate volume. The filtrate and the NaCl solution were

gently mixed and then allowed to separate into two phases.

The lower phase was evaporated, and the residue was

resuspended in ethanol. CoQ10 contained in this solution

was analyzed by HPLC (Agilent 1200, USA) on a Zorbax

Eclipse Plus C18 column (100 mm 9 4.6 mm, 5 lm) with

ethanol as the mobile phase at a flow rate of 1 ml/min. The

CoQ10 was quantified by an external standard method,

based on the peak area, and detected at 275 nm. The

intracellular content of CoQ10 was estimated by the rela-

tionship between dry cell weight and the amount of CoQ10
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in the broth. The CoQ10 measurement was carried out in

triplicate.

Statistical analyses

Statistical analyses were done with measurements obtained

from this study. Since the sample observations were not

arranged in a frequency distribution, the standard devia-

tions were calculated by the following procedures: each

deviation was squared, the sum of the squares was divided

by (n - 1), one less than the sample size (n) (this resulted

in the sample variance), and finally extraction of the square

root recovered the original scale of measurement. Com-

parisons of means were performed by the Tukey method

[34] using the SAS program, since all sample sizes were

equal. Differences were considered significant at P \ 0.05.

Results and discussion

Effect of temperature on CoQ10 production

The effect of temperature on CoQ10 production by

R. sphaeroides mutant cells was investigated in a 1-l

reactor. The mutant strain of R. sphaeroides used in this

study formed green colonies on the bouillon medium,

which was found to be superior to its wild-type strain for

CoQ10 production in our previous study [29]. This was

likely because the mutant strain of R. sphaeroides could

overcome growth inhibition by menadinone during ubi-

quinone biosynthesis or its related metabolisms, and thus

this might result in the overproduction of CoQ10 [30]. Up

to now, successful approaches for the commercial pro-

duction of CoQ10 have relied predominantly on bacterial

mutants selected for their high CoQ10 content [17].

In all fermentations carried out at various temperatures,

all profiles of cell growth and DO level were almost sim-

ilar: Cells grew steadily until approximately 24 h, and then

cell growth decreased slowly. The DO level in the reactor

was rapidly dropped to 0.9 mg/l within 3–4 h with the

occurrence of foam; after that it was maintained at less than

1.0 mg/l until approximately 24-h fermentation, and it was

slowly increased without aeration in the end. The maxi-

mum values of specific CoQ10 content in all fermentations

were achieved similarly at the point where the maximum

DCW was obtained. As seen in Table 1, the maximum

specific CoQ10 content (4.66 mg/g DCW) was achieved at

30�C in three replicate experiments. Sasaki and Nagai [35]

reported that the maximum CoQ10 production by Rhodo-

pseudomonas gelatinosa was obtained at 35�C. In this

study, however, the increase of temperature over 30�C

resulted in the decrease CoQ10 production with the

decrease of DCW. This difference may exist because dif-

ferent species of photosynthetic bacteria are able to ferment

under many different environmental conditions [36]. At the

maximum CoQ10 production (4.66 mg/g DCW), the value

of CoQ10 productivity was 0.569 mg/l/h. A similar result

could be found in the recent study of Yen and Shih [37], in

which 4.6 mg CoQ10/g DCW of the maximum CoQ10

content (with 0.48 mg/l/h of the maximum CoQ10 pro-

ductivity) was achieved in a 5-l airlift bioreactor using

R. sphaeroides. Moreover, Yoshida et al. [30] reported that

high production of CoQ10 was not always reproduced in

subsequently repeated experiments using a mutant strain.

This is due to reversion of a mutant strain to a wild-type

strain, which is a well-known cause of disappointment in

the industrial application [38]. However, the values of

CoQ10 content were not significantly different in our three

replicate experiments, indicating that the mutant strain

used in this study was reproduced stably by the chemical

mutation.

Effect of initial aeration-rate on CoQ10 production

In our previous study [20], it was found that the control of

the DO level during the fermentation of R. sphaeroides was

crucial to obtain higher CoQ10 content. According to this

finding, the effect of initial aeration-rate on the CoQ10

production was investigated in a 150-l reactor at various

aeration rates (Table 2). During fermentations at all aera-

tion rates, all profiles of cell growth, DO level, and CoQ10

production exhibited almost the same tendency. The

maximum value of the specific CoQ10 content, 6.34 mg/g

DCW, was achieved at 2 vvm, from which 0.798 mg/l/h of

Table 1 Comparative results of CoQ10 production in a 1-l reactor at various temperatures

Temperature (�C) DCW (g/l) Specific CoQ10 content (mg/g DCW) CoQ10 productivity (mg/l/h)

27 2.65 ± 0.05b 3.80 ± 0.03b 0.438 ± 0.03b

30 2.93 ± 0.03a 4.66 ± 0.03a 0.569 ± 0.03a

34 2.68 ± 0.07b 3.78 ± 0.04b 0.442 ± 0.04b

37 2.03 ± 0.05c 3.02 ± 0.04c 0.255 ± 0.03c

40 0.96 ± 0.03d 1.98 ± 0.03d 0.079 ± 0.03d

Means with different superscript are significantly different (P \ 0.05). Values represent mean ± SD of three replicates
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CoQ10 productivity was obtained. These values were

higher than those obtained from a 1-l reactor. This result

indicated that the increase of air flow rate would be nec-

essary in scale-up for higher CoQ10 production. This may

happen because the maximum permissible air-flow rate is

more limited in a smaller reactor than that in a larger

reactor. However, a further increase of the initial aeration

rate (at 3 vvm) in a 150-l reactor resulted in lower CoQ10

production with significantly lower DCW. It has been

reported that a high aeration rate would lead to the increase

of cell growth rate, but a slight decrease of CoQ10 content

[37]. In this study, however, not only CoQ10 production,

but also DCW was lower at 3 vvm, indicating some exer-

tion of shear stress on the cells.

Optimum CoQ10 production in a batch fermentation

The best result of fermentation operated in a 150-l reactor

is seen in Fig. 1. The fermentation was carried out initially

under the optimum conditions (30�C, 200 rpm, 2 vvm and

50 lux) achieved from this study and our previous study as

well [20, 31]. Under the above conditions, the DO level in

the reactor was rapidly decreased to 1.5 mg/l within 3 h,

and then further decreased to 0.6 mg/l around 7 h with the

occurrence of foam. The DO level dropped a little more

severely than in a 1-l reactor, which indicated that micro-

bial oxygen-consumption in the larger reactor appeared to

be higher during the early growth phase. After cells entered

active cellular metabolism (after 7 h), the DO level was

maintained at a low rate (less than 1.0 mg/l) by DO control.

The DO level was increased slowly after 24 h of fermen-

tation without aeration. This result may be attributed to the

oxygen requirements of R. sphaeroides, a facultative

microorganism, at the early growth phase, but its metabo-

lism may have to switch to fermentation metabolism

afterwards for higher CoQ10 production [36, 39]. From the

beginning, the pH was steadily increased up to 9.35 until

24 h, and then decreased a little. Likewise, both the cell

concentration and the specific CoQ10 content were

increased until 24 h, and then decreased slowly. The

maximum CoQ10 production was 6.34 mg/g DCW, with

3.02 g/l of DCW. The profile of CoQ10 production exhib-

ited that it was growth-associated, possibly clarified as a

primary metabolite. The same results were found in other

studies of Rhodobacter sp. by Yamada et al. [40] and

R. sphaeroides by Yen and Chiu [41] as well. In those

studies, CoQ10 biosynthesis occurred predominantly during

the exponential growth phase. Therefore, R. sphaeroides

mutant cells must be harvested at the late-exponential

growth phase for commercial use.

It is clear that problems of scale-up in a bioreactor are

associated with the behavior of liquid in the bioreactor and

the metabolic reactions of the microorganisms [42, 43].

Accordingly, transport limitation is considered to be one of

the major factors responsible for phenomena observed at

large scale. For this reason, scale-up is still regarded more

as an art than a science [44]. In our previous study [31], it

was found that poorer conditions of aeration-agitation

during active fermentation resulted in higher production of

CoQ10, and thus the level of DO in the reactor was detri-

mental to the cell growth and CoQ10 production, which was

in agreement with the results reported in the studies of

Agrobacterium species by Kuratu et al. [45], A. tumefac-

iens by Ha et al. [11], Rhizobium radiobacter by Wu et al.

[46], and R. sphaeroides by Urakami and Yoshida [47].

Specifically, Yen and Chiu [41] suggested that the culti-

vation of R. sphaeroides under the conditions of aerobic-

dark at 0% DO could be applied to the CoQ10 production

for scale-up. Accordingly, the DO control during fermen-

tation, which enhances the CoQ10 biosynthesis, plays an

important role in commercial CoQ10 production. In this

study, fermentation started with sufficient aeration at

2 vvm, which could increase the cell growth rate at the

early growth phase [39], and then aeration was controlled

after rapid decrease of the DO level (after 7 h) to maintain

the DO level at less than 1.0 mg/l. This aeration shift in

active cellular metabolism could lead to a higher CoQ10

content successfully in a pilot-scale fermentation. Conse-

quently, this aeration shift was a key factor in CoQ10

production by R. sphaeroides for scale-up.

Increased CoQ10 production in a fed-batch fermentation

Time course analysis of pH, DO, DCW, and CoQ10 was

performed in a fed-batch fermentation (Fig. 2). After 24,

36, 47, and 58 h of fermentation, 10 l of fresh culture

medium was fed to the 150-l fermenter. Cell activity was

maintained well enough during the fed-batch fermentation.

Table 2 Comparative results of CoQ10 production in a 150-l reactor at various aeration rates

Aeration rates (vvm) DCW (g/l) Specific CoQ10 content (mg/g DCW) CoQ10 productivity (mg/l/h)

1 2.85 ± 0.03b 4.68 ± 0.04b 0.556 ± 0.04b

2 3.02 ± 0.03a 6.34 ± 0.03a 0.798 ± 0.04a

3 2.65 ± 0.04c 4.05 ± 0.03c 0.444 ± 0.04c

Means with different superscript are significantly different (P \ 0.05). Values represent mean ± SD of three replicates
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The value of specific CoQ10 content reached 8.12 mg/g

DCW in 70 h of fermentation, and the biomass (DCW)

increased up to 6.72 g/l. This value of the specific CoQ10

content corresponded to 1.28 times more than that

achieved from batch operation. However, the increase of

CoQ10 production in the fed-batch fermentation was not

high, compared with the result of fed-batch culture by Ha

et al. [11] (1.3 times higher) or Gu et al. [32] (3.5 times

higher), which was carried out in laboratory-scale fer-

menters. This was caused probably by difficulty of scale-up

and/or feeding strategy in fed-batch operation [21].

Comparison of pilot-scale CoQ10 production

The result of this study was compared to representative

CoQ10 productions by photosynthetic bacteria, which have

been reported in literature to date. As seen in Table 3, the

values of specific CoQ10 content varied. Although inten-

sified efforts in the development of bioprocess have been

made recently for the commercial CoQ10 production [17],

the CoQ10 productions achieved in the 1990s were some-

what higher than those achieved in recent years. The

highest value of specific CoQ10 content (12.5 mg/g DCW)

was achieved from fed-batch fermentation by the study of

Sakato et al. [19], which was higher than that (8.12 mg/g

DCW) achieved from fed-batch fermentation by this study.

Among these strains of photosynthetic bacteria seen in

Table 3, however, direct comparison for commercial

CoQ10 production was difficult because all results were

achieved in laboratory-scale experiments except for this

study. Their potential for commercial CoQ10 production

must be verified in a pilot-scale fermenter, since their

scale-up has been known to be difficult [21].

There have been few reports of pilot-scale or plant-scale

CoQ10 fermentations to date (Table 4). In addition to these

reports, Sakato et al. [19] reported that successful fermen-

tation in a 80-kl fermenter was accomplished by the control

of ORP during the last phase of fermentation. However,

Fermentation Time (h) 

0 10 20 30 40

pH

6

7

8

9

10

D
O

 le
ve

l (
%

)

0

20

40

60

80

100

D
C

W
 (

g/
L)

0

1

2

3

4

C
oQ

10
 c

on
te

nt
 (

m
g/

g)

0

2

4

6

8
pH
DO level
DCW
CoQ10 content

Fig. 1 Profiles of pH, DO level,

DCW, and CoQ10 content in

batch fermentation under 30�C,

200 rpm, and 50 lux. Error
bars: mean ± SD of three

replicates

Fermentation Time (h)

0 20 40 60 80

pH

6

7

8

9

10

11

D
O

 le
ve

l (
%

)

0

20

40

60

80

100

D
C

W
 (

g/
L)

0

2

4

6

8

C
oQ

10
 c

on
te

nt
 (

m
g/

g)

0

2

4

6

8
pH
DO level
DCW
CoQ10 content

Fig. 2 Profiles of pH, DO level,

DCW, and CoQ10 content in

fed-batch fermentation using

four stage feeding strategy

under 30�C, 200 rpm, and 50

lux

526 J Ind Microbiol Biotechnol (2010) 37:521–529

123



detailed results for CoQ10 production could not be acquired

from that study because it was not explicitly reported. As

seen in Table 4, Ha et al. [11] produced 8.24 mg CoQ10 per

a gram of DCW in a 300-l fermenter by a fed-batch fer-

mentation using A. tumefaciens, and a not significantly

lower level of CoQ10 production was obtained satisfactorily

even in a 5,000-l fermenter. Moreover, Ha et al. [48] could

achieve improved CoQ10 production in fed-batch fermen-

tation by optimized control of the substrate concentration.

In this study, on the other hand, we achieved 6.34 mg

CoQ10 per a gram of DCW by batch fermentation using

R. sphaeroides, and we achieved a higher specific CoQ10

content (8.14 mg/g DCW) by fed-batch fermentation,

which was comparable to those of A. tumefaciens.

Accordingly, R. sphaeroides used in this study was verified

as a potential producer for commercial CoQ10 production.

Recently, economical production of CoQ10 by microbes

has become more important because of the growing

demands of the pharmaceutical industry [18]. Among the

natural producers, A. tumefacients and R. sphaeroides have

been identified as good candidates for CoQ10 production

[11, 12]. Up to now, there have been some scale-up studies

of the CoQ10 fermentation using A. tumefacients, but no

studies of CoQ10 fermentation using R. sphaeroides.

Accordingly, CoQ10 production using R. sphaeroides in a

pilot-scale fermenter in this study was valuable to verify its

potential for commercial CoQ10 production. Now, we are

preparing a clinical test of CoQ10 as an ointment for the

removal of wrinkles.
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